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Abstract

A complex coordinate shift is incorporated in renormalized hypervirial
perturbation theory. Test calculations on harmonic oscillators with cubic
perturbations show that the resulting method produces accurate numerical
results for the real energies of PT symmetric Hamiltonians with complex
potentials and for the complex resonance energies of Hamiltonians with real
potentials.

PACS numbers: 03.65.Sq, 31.15.Md

1. Introduction

The hypervirial relations were first used passively to provide calibratory tests for the accuracy
of variational wavefunctions [1, 2] and then in a more active role to find perturbed oscillator
energies either by hypervirial perturbation theory (HVPT) [3] or by direct calculation [4].
HVPT is able to calculate expectation values 〈xN 〉 as well as energies, which gives it an
advantage over the Bender–Wu form of perturbation theory [5]. It also works for the perturbed
hydrogen atom, for which the unperturbed spectrum has a continuous part [6]. Renormalized
perturbation theory [7–10] produces accurate numerical results by making a repartitioning
of the perturbed and unperturbed parts of the Hamiltonian. In [10], it was shown that a
direct HVPT approach to the repartitioned Hamiltonian gives the better behaved renormalized
energy series which had previously been obtained by a transformation of the strongly divergent
traditional perturbation series [8]. It was also shown that WKB as well as quantum-mechanical
energies can be found by using HVPT [11, 12] and that for some radially perturbed Coulomb
potentials even formally non-analytic eigenvalues can be calculated by varying the index I
in perturbation terms of the form λIrN [13]. A complex variable form of the theory has also
been found to give the complex resonant state energies for perturbed oscillator and Coulomb
systems [14, 15]. In the 1980s, the renormalized version of HVPT became known as the
Caswell–Killingbeck method (CKM), a name that has persisted in the literature [16–18].
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The simple CKM form of HVPT not only produced the more recent developments outlined
above but also has features which inspired other theoretical methods, as can be seen by
considering the standard case of the perturbed oscillator potential x2 + λVx4. The CKM would
rewrite this as Wx2 + λ(Vx4 − Ux2), with U = W − 1 and with λ = 1 (to avoid high powers
of λ appearing in the perturbation sums). It would also choose W while remembering that the
physical results depend only on the full Hamiltonian, so that the results should in principle
vary as little as possible with the perturbative partitioning used in the calculation.

These two parts of the CKM were later developed to give the linear delta expansion
[17, 19] and the principle of minimal sensitivity (PMS) [20, 21]. Although the method
nowadays called variational perturbation theory (VPT) has led to powerful techniques in path
integral theory and field theory [22] its origins in the earlier work are visible. The founding
work of VPT [23] referred to the work of Caswell [8], while the basic work on the PMS (widely
used in VPT) cited the principle as arising within the CKM [21] (with an acknowledgement
to the present author).

In recent years there have been several noteworthy advances in the theoretical and
numerical aspects of renormalized perturbation theory. It has been shown, for example,
how to achieve the perturbed/unperturbed splitting of the Hamiltonian so as to ensure the
fastest convergence as the order increases [17, 18] (here the work of [9] is the pioneering one)
and how to obtain a strong field perturbation series by an ingenious manipulation of the weak
field renormalized series [24]. Since HVPT is often referred to as ‘perturbation theory without
a wavefunction’, one interesting development has been the attempt to estimate the perturbed
wavefunction by a careful use of the PMS [25, 26], as well as by using the hypervirial relations
and a minimum entropy approach [27].

The present publication extends the CKM version of complex HVPT [13, 14]. We add
an extra degree of freedom to the renormalized Hamiltonian by permitting a coordinate shift
as well as the usual repartitioning between perturbed and unperturbed terms. Various authors
have used the idea of a coordinate shift [e.g. 22, 25, 26] in their work but without exploring its
full effectiveness in improving numerical calculations. The present work shows that the use of
a complex coordinate shift leads to accurate energies for some systems with PT symmetry and
real energies as well as for systems with a real potential and complex resonant state energies.
Most of the discussion is concerned with oscillator systems with perturbations of the cubic
form Ax3, with A either pure real or pure imaginary, since for such systems there are many
comparison results in the literature.

Section 2 describes the calculation of the shifted potential and section 3 gives some
specimen results to illustrate the effectiveness of the process. Section 4 shows how well the
method can deal with excited states, which would be difficult to reach by other methods.
Section 5 summarizes the experience gained during the calculations and describes some extra
numerical work, which arose out of that experience. Section 6 discusses some relevant
theoretical background to the work.

2. The basic transformation equations

We adopt throughout a numerical approach, with no use of computer algebra. The advantage
of the approach described in this section is that anyone who already has a program which
implements complex HVPT for a perturbing potential containing both even and odd powers
of x can simply add a short subroutine which produces the modified potential for the existing
program to use. We suppose that we are given an initial complex potential of the form

U(x) =
∑

[UR(J ) + i UI (J )]xJ (J = 1 to 3). (1)
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The shift is most simply described by saying that we will replace x by x + (X + iY). This
fixed-coordinate shift formally leaves the kinetic energy operator invariant but changes the
potential from U(x) into a new potential V(x). We expand the powers of the shifted coordinate
in the form

[x + (X + iY )]M =
∑

[A(M,N) + iB(M,N)] xN (N = 0 to M). (2)

Considering the action of multiplying this expression by [x + (X + iY)] leads us to the recurrence
relations

A(M + 1, N) = A(M,N − 1) + XA(M,N) − YB(M,N) (3)

B(M + 1, N) = B(M,N − 1) + XB(M,N) + YA(M,N) (4)

with the obvious initial conditions A(0, 0) = 1 and B(0, 0) = 0. The transformed potential
will have contributions to its xN term coming from each other power xJ in the original potential
U(x). The new shifted potential terms thus involve a sum over J involving complex products

V R(N) =
∑

[UR(J )A(J,N) − UI (J )B(J,N)] (5)

V I (N) =
∑

[UR(J )B(J,N) + UI (J )A(J,N)]. (6)

This transformed potential with terms [VR(N) + i VI(N)]xN is then used as the potential in
a complex hypervirial calculation, with the resulting sequence of complex energies being
treated by a complex form of the Wynn epsilon algorithm if necessary. The calculation was
initially carried out in QBasic interactive mode (before being translated into Fortran), since
the choice of the reference oscillator potential [WR + i WI]x2 in the renormalized HVPT has to
be based on the knowledge of the modified term [VR(2) + i VI(2)]x2 which emerges after the
shift operation has modified the terms in the potential. For most of the calculations reported
here VI(2) is zero and so it is not difficult to produce a simple rule that sets a satisfactory real
WR which is a fixed multiple of the resulting VR(2) value. The most obvious advantage of
using a complex shift for a PT symmetric Hamiltonian is that it increases the magnitude of the
x2 term in the Hamiltonian and thus decreases the effective strength of the perturbation. The
shift also introduces a linear term involving x into the perturbation, which requires us to make
a further choice about the power of λ to be formally associated with each term. For example,
the convention is often used that an x term is prefixed by λ and an x3 term by λ2. However, in
renormalized perturbation theory there is usually an extra perturbation term involving x2. We
have used the simple convention that the every term in the perturbation is formally associated
with the first power of λ in deriving the hypervirial recurrence relations (remembering, of
course, that λ is set equal to 1 in numerical calculations). The numerical results show that this
choice is adequate. In the literature dealing with perturbed cubic Hamiltonians of the form
−AD2 + Bx2 + Cx3 (with C real or imaginary) one can find many different numerical values
for the coefficients A, B and C. Thus, although we have performed test calculations on the
results from a range of published works, we have not undertaken the tedium of presenting a
table for every possible case, since readers will find the method of this work so simple that
they can apply it themselves to any specific example. We have presented detailed tables for
several particular calculations but have simply given selected numerical results in the text to
summarize some of the other checking calculations that were performed.

3. Some specimen results

As an initial test during the development of the technique of this work it was decided to
take some standard results from the recent literature to give reference values. The results
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were somewhat surprising and so were checked by means of an alternative complex matrix
method (which gave the same results). In his recent comprehensive review of PT symmetry,
Bender [29] gave a table of numerical results for the low-lying real eigenvalues arising from
the potentials ix3 and −x4. The latter potential is a favourite example for workers in spectral
theory who like to ‘épater la bourgeoisie’, since it only acquires its real spectrum by imposing
the boundary conditions within two downwards-sloping wedges in the complex plane which
meet at the origin. In some remarkable work, using several different methods, Bender and
Jones and co-workers [29–31] have shown that the real energies which arise in the complex
wedge calculation can be produced by carrying out a traditional real axis calculation using a
real potential, which is 4x4 − 2x for the case of the starting potential −x4. It is thus possible to
compute the results given in one-half of Bender’s table 1 by using several different traditional
techniques. We show our results, compared with those of [29] in table 1. The results for the
potential 4x4 − 2x were obtainable by using real variable renormalized HVPT with a reference
potential of 30x2 and were checked by means of a finite difference calculation. The results for
the potential ix3 were obtained by using the complex HVPT with a complex shift (as described
in section 1) and were also checked by using a matrix calculation with complex oscillator
basis functions.

The discrepancy between our results and those of [29] clearly increases with the state
number. Since the results in [29] were obtained by using a Runge–Kutta procedure in the
complex plane, it is possible that too large a steplength was being used in the calculations;
the safe procedure would be to use a few decreasing steplengths together with Richardson
extrapolation. In table 1 most results have been quoted to only the same number of digits as
were used in the original table, since that is sufficient to reveal the discrepancy. We note that
the authors of [30] perhaps also obtained (unquoted) results of high accuracy but were only
trying to match the five or six digit results for the lowest five states, which had appeared in
one of the founding papers of PT symmetry theory [32]. At the bottom of table 1 we add some
more accurate results for the states n = 0 to n = 4, obtained by letting the parameter Y in the
shift vary in steps of 0.1 between −1 and −2 so as to obtain the greatest number of stable
digits in the results. That these more accurate energy values are indeed reliable is indicated
by the fact that they fall correctly between the upper and lower bounds produced by highly
accurate moment method calculations in [33].

The second recent example which we used as a preliminary test was the set of results for
the Hamiltonian

H = −(1/2)D2 + (1/2)x2 + i ßx3 (7)

given in table 1 of [34]. We used only the fixed complex shift (0, −1) for the test, with no
attempt at optimizing the shift. We also used the same shift to treat the real perturbation βx3,
with the surprising result that a complex shift was very efficient for this potential also, whereas
intuition might suggest the use of a real shift. Table 2 shows the results, which illustrate how
well the complex shift procedure bestows high accuracy on the traditional CKM/HVPT. The
slight variation of accuracy in the table is due to the fixed non-optimized value of the shift that
is used. For the limited set of β values which we used our resonance results are, of course, more
accurate than the complex matrix ones reported in [34], where only low accuracy was needed to
make a comparison with the results which were produced by a proposed quantization condition
to find the energy levels. In [34], the authors give extra information about the resonance for the
perturbation 61/2x3. They state that the use of Borel–Padé summation on the traditional energy
perturbation series produces an energy estimate of 0.5541 − 0.035 16i and that their complex
scaling calculation gives 0.554 053 519 − 0.351 401 778i. Our complex shift approach gives
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Table 1. HVPT results for the Hamiltonians − D2 + U, with U = ix3 and U = 4x4 − 2x (representing
−x4).The results of [29] are placed in brackets below the results from the present calculation. The
fixed shift (X, Y) = (0, −1) was used for the low precision results. The higher accuracy results for
n = 0 to 4 were obtained by a rough optimization of the value of Y.

N E(ix3) E(−x4)

0 1.156 267 072 1.477 149 754
(1.156 267 072) (1.477 149 753)

1 4.109 228 753 6.003 386 083
(4.109 228 752) (6.003 386 082)

2 7.562 273 855 11.802 433 595
(7.562 273 854) (11.802 433 593)

3 11.314 421 820 18.458 818 704
(11.314 421 818) (18.458 818 694)

4 15.291 553 750 25.791 792 378
(15.291 553 748) (25.791 792 423)

5 19.451 529 131 33.694 279 877
(19.451 529 125) (33.694 279 298)

6 23.766 740 435 42.093 807 711
(23.766 740 439) (42.093 814 569)

7 28.217 524 973 50.937 404 325
(28.217 524 934) (50.937 278 826)

8 32.789 082 782 60.184 331 266
(32.789 082 922) (60.185 767 651)

9 37.469 825 361 69.802 096 675
(37.469 824 697) (69.795 703 031)

0 1.156 267 071 9881
1 4.109 228 752 8096
2 7.562 273 854 9788
3 11.314 421 820 1958
4 15.291 553 750 3925

(with Y = −1, W = (0.5, −2.5)) the real part of the energy as 0.554 053 518 461 01 and the
imaginary part as −0.351 401 777 593 69.

The Hamiltonian (7) with a real cubic perturbation βx3 was also treated in [35] for a range
of β values, although only for the states n = 0 and n = 4. The complex shift method gives
highly accurate results for all the cases treated in [35]. As an example we give the results of
[35] for the case β = 1 with the extra digits from the shift method, with shift (X, Y) = (0, −1),
added. For the n = 0 state we find E = 0.612 888 4333(07 755) − 0.408 592 6669(32 265)i
while for the n = 4 state we find E = 8.136 859 247(48 807) − 5.824 979 543(55 288)i. These
specimen results show the accuracy of the shift method, although it should be noted that
energies with such a large EI value hardly merit the name of resonance state energies, if we
think of the reciprocal of EI as being a lifetime for the decay of an initially concentrated
wavepacket.

As an example of an individual result from the literature for the perturbation iβx3 we
note that [25] quotes the lowest energy for β = 1 as being 0.797 342 612, as obtained from
a matrix calculation. A rough optimization using our method gives Y = −0.6 and W = 6
and an eigenvalue of 0.797 342 607 508 9055. In a test of the n-loop approximation in VPT a
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Table 2. Some specimen results for the ground-state eigenvalue for the Hamiltonian H =
(1/2) (−D2 + x2) + Kβx3, with K = i and K = 1. The fixed shift (X, Y) = (0, −1) was
used for all calculations. The fixed choice (WR, WI) = (5/4)(VR(2), VI(2)) was also used. The
complex energy for the case K = 1 is given first.

β ER EI

1/10 0.484 315 997 004 8.060 29 (−6)
0.512 538 145 9393

1/8 0.472 398 732 48 7.026 247 07 (−4)
0.518 760 344 5588

1/6 0.442 520 045 125 1.551 792 5820 (−2)
0.530 781 759 3042

1/4 0.413 859 273 8354 8.902 195 469 26 (−2)
0.558 372 124 1780

3/8 0.434 523 763 9846 1.853 383 603 434 (−1)
0.602 504 355 6468

1/2 0.472 130 852 566 74 2.527 192 945 421 (−1)
0.645 877 080 9870

numerical reference value of 0.762 851 773 is quoted in [36] for the ground-state energy for
H = −(1/2)D2 + ix3. HVPT with a complex shift gives the energies 0.762 851 774 227 2636
for the state n = 0 and 2.711 079 923 253 886 for the state n = 1.

To test the shifted HVPT method for a wider range of perturbation strengths we applied
it to the Hamiltonian

H = −D2 + (1/4)x2 + i ßx3, (8)

which was treated in [37]. The simple choices (X, Y) = (0, −1) and W = V(2) were adequate
to give the results shown in table 3, where a comparison with the results of [37] is shown.

4. Excited state calculations

For the study of excited states HVPT has the advantage that a specific state can be selected
and studied individually, making it possible to adjust any relevant parameters to improve the
accuracy of a particular eigenvalue. Thus for example, we could study the n = 1000 perturbed
state, which in a standard matrix approach would require a matrix with a dimension of a few
thousand. We apply our shifted HVPT method to the cubic Hamiltonian already treated in
section 2:

H = −D2 + ix3. (9)

When a shift of the form (0, Y) is used the most obvious result is a modified x2 term, which
we denote by Vx2 and which is real for many of our calculations. The key decision to take
next is that of the W coefficient in the reference potential Wx2, so that (U − W )x2 is added to
the rest of the potential to give the effective perturbing potential. In interactive computing the
operator can select the W value at will, whereas in an automatic program some rule must be
incorporated in the program (or a loop scanning a range of choices must be used). Fortunately,
a few preliminary calculations quickly give a good idea of the suitable parameter choices (in
this case for Y and W ). It turns out that the choices become less critical for the higher states,
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Table 3. Some energy levels for −D2 + (1/4)x2 + i βx3. The ground-state result from [37] is shown
first, followed by the extra digits given by the shifted HVPT. The fixed shift (X, Y) = (0, −1) is
used throughout. The energies for n = 1 are also given below the n = 0 energies.

β E

0.015 625 0.502 63(229 852 749)
1.516 707 457 175 95

0.131 25 0.509 9(8)(759 721 4623)
1.560 869 385 023 72

0.0625 0.533 93(160 859 384)
1.689 654 758 742 55

0.125 0.5949(2)(1522 277 104)
1.971 226 201 092 90

0.25 0.7129(4)(3574 894 383)
2.450 816 596 177 90

0.50 0.9002(6)(5805 810 384)
3.156 761 371 513 62

1.00 1.1674(6)(5456 842 266)
4.128 556 056 50360

2.00 1.5307(8)(7725 501 108)
5.430 779 723 244 74

Table 4. Some excited state energies obtained by the shifted HVPT method for H = −D2 + ix3.
The choice W = VR(2) is made for every state and direct convergence is obtained. The shift used
is of the form (X, Y) = (0, −h) for every state.

N h W E

25 3 9 122.522 505 832 8462
50 4 12 278.170 980 319 1869

100 6 18 635.272 473 652 1825
150 7 21 1031.345 791 806 419
200 8 24 1455.116 150 440 382
250 9 27 1900.770 320 564 373
300 10 30 2364.687 274 184 924
400 11 33 3337.977 030 787 495
500 12 36 4361.593 699 830 571

1000 16 48 10014.304 805 442 44
2000 20 60 22999.932 295 331 49
3000 24 72 37410.425 463 04816
4000 27 81 52832.044 760 929 74
5000 29 87 65092.023 182 011 52

10 000 38 114 158630.373 430 2000
20 000 50 150 364425.965 460 5554
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to such an extent that the perturbation series converges directly without any need for the use
of the Wynn epsilon algorithm to treat the partial sums of the series. Table 3 gives results
for some high-lying levels for the Hamiltonian in (9), showing the parameters which were
used and which led to full double precision convergence for most of the states. It is perhaps
useful to add a comment here about the computational procedure. After the action of the shift
transformation the new potential V acquires a component VR(2)x2. If the choice WR = VR(2)
is made then the resulting perturbation series will have alternate perturbation coefficients equal
to zero. This behaviour will arise in general for odd parity perturbations. It is thus important
to include a general command in the program which only forms the next partial sum when
the current perturbation term is non-zero. The sequence of partial sums then does not have
any equal numbers in it, which avoids problems if the sequence of partial sums is acted on
by the Wynn epsilon algorithm. In fact, for the results shown, the epsilon algorithm is not
needed, since convergence of the partial sums is obtained directly with the choice W = VR(2).
We have given results in table 3 for states up to n = 20 000, but an n value of hundreds of
thousands is attainable; the results provide an example of a case in which perturbation theory
is more effective than the complex matrix approach (and most other methods).

Although we give only a few illustrative results in our tables we have checked many
published results. We can, for example, reproduce the full range of complex eigenvalues given
in the tables of [38] for a real cubic perturbation and can also treat higher states. Our results
indicate that for the particular case H = −(1/2)D2 + (1/8)x2 + 0.5x3 some digits have been
transposed in table 1 of [38]. The quoted n = 0 energy has a real part of 0.466 391 109 8243,
which should be 0.466 391 108 9243 according to our calculation.

5. Discussion of the results

In the present short work we have presented some preliminary calculations, which suggest
that the use of a complex shift in HVPT can be helpful in improving the accuracy of numerical
calculations for some problems involving resonances or PT symmetric Hamiltonians. The
reference problems treated were mainly taken from the literature, although the results of
section 3 show that the perturbation approach is capable of reaching very high excited states
with which other methods would have considerable difficulty. As is usual in the CKM the
approach used was largely empirical, with rough rules about how to select optimum parameters
being established after a sequence of trial and error calculations (so that interactive computing
is a useful first step in gaining experience). To illustrate what happens to the potential during
the shift process we quote an example from the reported calculations. For the Hamiltonian
−D2 + ix3 and the case of the imaginary shift (X, Y) = (0, −1) the transformed potential takes
the form V(x) = −1 −3ix + 3x2 + ix3. Thus the quadratic term has been increased from 0x2

to 3x2, rendering the problem essentially a weak perturbation problem, while the perturbing
potential has acquired an extra imaginary term −3ix. The resulting series converges quickly,
even with a reference potential 3x2 (i.e. without any extra renormalization being used). This
example shows that the HVPT calculation is actually treating a perturbing potential which
includes both linear and cubic imaginary terms, of the type treated in the accurate moment
calculations of [39]. It thus seems that the method of the present work should be able to deal
with the class of problem treated in [39]; we have accordingly made a few test calculations to
check this conjecture. We treated the Hamiltonian −D2 + ix3 + Ax, using the shift (X, Y) =
(0, −2), for the values A = 1, 2, 3, 4, 5 and with no further renormalization procedure (i.e.
with W = VR(2)). The resulting energies were highly accurate; as in the example of section 3
it turned out that the quickest convergence was for excited states. We quote as an example the
energies given for the n = 3 state in [39], with the extra digits given by our calculation added

8
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at the end: A = 1, E = 12.736 497 38(761 914); A = 2, E = 14.244 0319(3189 580); A = 3,
E = 15.836 8284(4867 431); A= 4, E = 17.513 684(19 055 618). Thus for the real energies the
method of the present work seems adequate when using only one parameter, the component Y
in the complex shift (X, Y). To attack the problem of the broken PT symmetry states which have
complex energies [39] would require a more detailed optimization involving both components
X and Y. We have made a few rough preliminary attempts in this direction but so far have
only managed to obtain a relatively low accuracy (the first 2 or 3 digits of ER and EI for the
complex energies of the form ER + iEI). This particular problem thus requires further work
to see whether the shift method is sufficiently flexible to handle the broken symmetry states
accurately. Since the shift method is such a simple one, we anticipate that our demonstration
of its effectiveness will encourage other workers to use and develop it.

The calculations reported here use a complex variable technique to deal with a complex
potential, except for the special case of the equivalent potential associated with the PT
symmetric potential −x4. In their discussion of the choice between using a complex PT
symmetric potential or its Hermitian equivalent Bender et al [40] used a Feynman diagram
formalism and for the potential iβx3 were only able to obtain a low order perturbative result,
since the full Hermitian equivalent for the potential is not explicitly available. Their general
conclusion was that a direct attack on the PT symmetric Hamiltonian is preferable to a detour
via an Hermitian equivalent. The calculations of the present work represent such a direct
attack; they also show that the CKM is still providing an effective tool for extending the range
of problems treatable by perturbation theory.

6. Some theoretical background

As is well known, several of the advances in PT symmetry theory were initially due to purely
numerical calculations [e.g. 32, 37] and the present work is intended both to give an effective
calculational method and to suggest another topic for mathematical investigation. The present
author is more experienced in the construction of efficient algorithms and programs than in
formal spectral theory but frequently uses the results of that theory to suggest fruitful topics
for numerical investigation.

The calculations of this paper were stimulated both by the many previously published
numerical results using a range of techniques to treat the cubically perturbed oscillator and
by the results and ideas contained in several papers in spectral theory. The first two of these
papers [41, 42] discussed the resonances for odd perturbations of the harmonic oscillator.
For the special case of a perturbation (βR + i βI)x3 of the harmonic oscillator the theoretical
conclusion was that for non-zero imaginary part βI the perturbed system remains discrete, as
was that of the unperturbed oscillator (thus a spectral concentration effect is not involved).
This discrete energy is obtainable (by a summation method) from the divergent Rayleigh–
Schrödinger perturbation theory and admits an analytic continuation to βI = 0, where it can
be interpreted as a resonance of the perturbed problem. In the other numerical works cited
in the present paper only the cases βR = 0 or βI = 0 were studied. However, the complex
HVPT method of this paper is sufficiently flexible to allow the use of a general complex β.
A few trial calculations with fixed βR and gradually decreasing βI showed that the complex
energy obtained by the shift method of this paper moves smoothly towards the βI = 0 results.
It is even possible to estimate the first few complex coefficients in a perturbation series in βI
for the complex energy E(βR + i βI) around βI = 0. Another relevant work [43] leads to
the conclusion (for the cases treated in the present work) that the real positive spectrum of a
harmonic oscillator remains real and positive for a perturbation α i x3 + γ ix, provided that α
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is non-zero and that the product αγ is non-negative. The numerical results of our calculations
are in accord with this theoretical conclusion.

The operation of combining a complex coordinate shift with a complex W parameter
which is used in the calculations reported here can be regarded as a special case of the
general conformal mapping approach which was developed in [44–46] in order to improve
the convergence properties of power series. The formal approach of these three papers shows
how the choice of the optimal conformal mapping is related to the way in which the mapping
displaces the singularities of the underlying function represented by the series (since the radius
of convergence is determined by the distance of the nearest singularity from the origin used
for the series expansion). The approach of the present paper has, of course, been empirical,
using a numerical search for the shift and W values which gave accurate energies.

The present work shows that a generalized form of complex HVPT can reproduce
(and improve on) the numerical results for several problems which have been treated by a
range of different methods in the literature. When it is recalled that the underlying simple
complexification approach has been equally effective in matrix calculations and in moment
method calculations [47, 48], it is hardly likely that this impressive range of results can be
accidental. The present author believes that the common thread throughout this group of
calculations is that they are all in some sense exploiting an equivalence to the complex rotation
method, which in many cases has turned out to be effective far beyond the regions in which
it is formally justified by the original Balslev–Combes theory. The question of why the
shift method works for the family of cubic potentials studied in this paper has been at least
partially answered by inspecting the detailed numerical consequences at various stages of the
computations. The principal reason for the success of the method in numerical terms is that it
converts an initial strong perturbation problem into a weak perturbation problem by increasing
the magnitude of the unperturbed harmonic term in the transformed Hamiltonian.
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